DocumentCode :
2296083
Title :
On computing marginal probability intervals in inference networks
Author :
Haider, Sajjad
Author_Institution :
Syst. Archit. Lab, George Mason Univ., Fairfax, VA, USA
Volume :
5
fYear :
2003
fDate :
5-8 Oct. 2003
Firstpage :
4724
Abstract :
Existing methods of parameters and structure learning of probabilistic inference networks assume that the database is complete. If there are missing values, these values are assumed to be missing at random. This paper incorporates the concepts use in Dempster-Shafer theory of belief functions to learn both the parameters and structure of the inference networks. Instead of filling the missing values by their estimates, we model these missing values as representing our ignorance or lack of belief in the actual state of the corresponding variables. There representation allows us to add new findings in terms of support functions as used in belief functions, thus providing a richer way to enter evidence in an inference network.
Keywords :
belief networks; inference mechanisms; learning (artificial intelligence); parameter estimation; uncertainty handling; Bayesian learning; Dempster-Shafer theory; belief functions; inference networks; marginal probability intervals; methods of parameters; probabilistic inference networks structure learning; Bayesian methods; Calculus; Computer architecture; Computer networks; Databases; Filling; Intelligent networks; Sampling methods; State estimation; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2003. IEEE International Conference on
ISSN :
1062-922X
Print_ISBN :
0-7803-7952-7
Type :
conf
DOI :
10.1109/ICSMC.2003.1245730
Filename :
1245730
Link To Document :
بازگشت