DocumentCode :
2297183
Title :
A new clustering evaluation function using Renyi´s information potential
Author :
Gokcay, Erhan ; Principe, Jose C.
Author_Institution :
Comput. Neuro Eng. Lab., Florida Univ., Gainesville, FL, USA
Volume :
6
fYear :
2000
fDate :
2000
Firstpage :
3490
Abstract :
Clustering is an important unsupervised learning paradigm, but so far the traditional methodologies are mostly based on the minimization of the variance between the data and the cluster means. Here we propose a new evaluation function based on a previously developed information theoretic measure defined from Renyi´s (1960) entropy. We show how to apply Renyi´s entropy to clustering and analyze the resulting staircase nature of the performance function that can be expected during learning. We suggest simulated annealing as a possible optimization criterion
Keywords :
entropy; function evaluation; pattern clustering; simulated annealing; unsupervised learning; Renyi´s entropy; Renyi´s information potential; clustering evaluation function; optimization criterion; simulated annealing; staircase performance function; unsupervised learning paradigm; Clustering algorithms; Data engineering; Entropy; Euclidean distance; Laboratories; Minimization methods; Neural engineering; Performance analysis; Signal processing algorithms; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.860153
Filename :
860153
Link To Document :
بازگشت