Title :
Mosaics, Fermat, Walsh (Aller guten Dinge sind drei)
Author_Institution :
Fundamentals of Soft Comput., Eur. Centre for Soft Comput., Mieres, Spain
Abstract :
Properties of the asymmetric two-sided Fermat Number Theoretic Transform are discussed. The Fermat transform matrix does not have a Kronecker structure, however the Fermat transform of Mosaics presents this structure. For mosaics with a 2 by 2 seed, the Walsh transform allows a fast calculation of the Fermat spectrum.
Keywords :
Walsh functions; matrix algebra; transforms; Fermat transform matrix; Kronecker structure; Walsh transform; asymmetric two-sided Fermat number theoretic transform; mosaics; Color; Computational efficiency; Context; Discrete Fourier transforms; Kernel; Zinc; Fermat transform; Mosaics; Number Theoretic transforms; Walsh transform;
Conference_Titel :
Multiple-Valued Logic (ISMVL), 2012 42nd IEEE International Symposium on
Conference_Location :
Victoria, BC
Print_ISBN :
978-1-4673-0908-0
DOI :
10.1109/ISMVL.2012.19