Title :
Robust control of a class of mechanical systems actuated by shape memory alloys
Author :
Jala, Vijay Reddy ; Ashrafiuon, Hashem
Author_Institution :
Dept. of Mech. Eng., Villanova Univ., PA
Abstract :
This paper presents a model-based sliding mode control law for interconnected mechanical systems which use shape memory alloys (SMA) as actuators. The systems under consideration are assumed to be fully actuated and represented by unconstrained equations of motion. A system model is developed which combines the equations of motion with SMA heat convection, constitutive law, and phase transformation equations. The sliding mode control law is introduced using asymptotically stable second-order sliding surfaces. Robustness is guaranteed through inclusion of modeling uncertainties in the controller development. The control law is developed assuming only positions are available for measurement. The unmeasured states which include velocities and SMA temperatures and stresses are estimated using an extended Kalman filter. The control law is applied to a three-link planar robot for set point and trajectory tracking problems and shown to be effective despite significant modeling uncertainty and lack of measurements for all states except the joint angles
Keywords :
asymptotic stability; intelligent actuators; interconnected systems; position control; robots; robust control; shape memory effects; uncertain systems; variable structure systems; asymptotically stable system; constitutive law; extended Kalman filter; heat convection; interconnected mechanical systems; modeling uncertainties; phase transformation; planar robot; robust control; second-order sliding surfaces; set point problem; shape memory alloys; sliding mode control; trajectory tracking problems; unconstrained equations; Actuators; Equations; Mechanical systems; Position measurement; Robust control; Shape memory alloys; Sliding mode control; State estimation; Stress; Temperature;
Conference_Titel :
American Control Conference, 2006
Conference_Location :
Minneapolis, MN
Print_ISBN :
1-4244-0209-3
Electronic_ISBN :
1-4244-0209-3
DOI :
10.1109/ACC.2006.1657670