DocumentCode :
2300614
Title :
Fuzzy control of parameters to dynamically adapt the PSO and GA Algorithms
Author :
Valdez, Fevrier ; Melin, Patricia ; Castillo, Oscar
Author_Institution :
Div. of Grad. Studies & Res., Tijuana Inst. of Technol., Tijuana, Mexico
fYear :
2010
fDate :
18-23 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
We describe in this paper a new hybrid approach for mathematical function optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic for parameter adaptation and integrate the results. The new evolutionary method combines the advantages of the fuzzy logic to give us an improved FPSO+FGA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid FPSO+FGA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The new hybrid FPSO+FGA method is shown to be superior to the individual evolutionary methods on the set of benchmark functions.
Keywords :
fuzzy control; fuzzy logic; genetic algorithms; particle swarm optimisation; evolutionary method; fuzzy control; fuzzy logic; genetic algorithms; parameter adaptation; particle swarm optimization; Acceleration; Benchmark testing; Equations; Fuzzy logic; Fuzzy systems; Optimization; Particle swarm optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on
Conference_Location :
Barcelona
ISSN :
1098-7584
Print_ISBN :
978-1-4244-6919-2
Type :
conf
DOI :
10.1109/FUZZY.2010.5583934
Filename :
5583934
Link To Document :
بازگشت