DocumentCode
2301147
Title
Kernel based image registration versus MLESAC: A comparative study
Author
Fuiorea, Daniela ; Gui, Vasile ; Pescaru, Dan ; Toma, Corneliu
Author_Institution
Commun. Dept., Politeh. Univ. of Timisoara, Timisoara, Romania
fYear
2009
fDate
28-29 May 2009
Firstpage
255
Lastpage
260
Abstract
This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important robust random sampling methods, RANSAC and MLESAC. These techniques are analyzed and tested for performance evaluation in several image registration scenarios.
Keywords
image registration; image sampling; maximum likelihood estimation; MLESAC; kernel based image registration method; maximum likelihood estimation sample consensus; mean shift algorithm; performance evaluation; random sampling method; Cost function; Image registration; Image sampling; Iterative algorithms; Kernel; Maximum likelihood estimation; Noise robustness; Parameter estimation; Probability density function; Solid modeling;
fLanguage
English
Publisher
ieee
Conference_Titel
Applied Computational Intelligence and Informatics, 2009. SACI '09. 5th International Symposium on
Conference_Location
Timisoara
Print_ISBN
978-1-4244-4477-9
Electronic_ISBN
978-1-4244-4478-6
Type
conf
DOI
10.1109/SACI.2009.5136252
Filename
5136252
Link To Document