DocumentCode :
2303701
Title :
Fractional du Bois-Reymond lemma of order α ∈ (n − 1 over 2, n)
Author :
Idczak, Dariusz ; Majewski, Marek
Author_Institution :
Fac. of Math. & Comput. Sci., Univ. of Lodz, Lodz, Poland
fYear :
2011
fDate :
5-7 Sept. 2011
Firstpage :
1
Lastpage :
4
Abstract :
In the paper, we derive a fractional du Bois-Reymond lemma for functions of one variable with Riemann-Liouville derivatives of order α ∈ (n - 1 over 2, n) where n ∈ ℕ, n ≥ 2 To prove this lemma we derive a theorem on the integral representation of a function possessing the fractional derivative of order α >; 0 and a theorem on the fractional integration by parts of high order.
Keywords :
differential equations; integral equations; tensors; Fractional du Bois-Reymond lemma; Riemann-Liouville derivatives; differential equations; fractional integration; integral representation; order α ∈ (n - 1 over 2, n); Computer science; Differential equations; Educational institutions; Equations; System-on-a-chip;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multidimensional (nD) Systems (nDs), 2011 7th International Workshop on
Conference_Location :
Poitiers
Print_ISBN :
978-1-61284-815-0
Type :
conf
DOI :
10.1109/nDS.2011.6076859
Filename :
6076859
Link To Document :
بازگشت