DocumentCode :
2304321
Title :
Variational Nonnegative Matrix Factorisation
Author :
Cemgil, A. Taylan
Author_Institution :
Bilgisayar Muhendisligi Bolumu, Bogazici Univ., Istanbul, Turkey
fYear :
2009
fDate :
9-11 April 2009
Firstpage :
680
Lastpage :
683
Abstract :
We describe non-negative matrix factorisation (NMF) in a statistical framework, with a hierarchical generative model consisting of an observation and a prior component. Omitting the prior leads to standard NMF algorithms as special cases, where maximum likelihood parameter estimation is carried out via the expectation-maximisation (EM) algorithm. Starting from this view, we develop Bayesian extensions that facilitate more powerful modelling and allow more sophisticated inference, such as Bayesian model selection. Our construction retains conjugacy and enables us to develop models that fit better to real data while retaining attractive features of standard NMF such as fast convergence and easy implementation. We illustrate our approach on model order selection and image reconstruction.
Keywords :
Bayes methods; expectation-maximisation algorithm; inference mechanisms; matrix decomposition; variational techniques; Bayesian inference; expectation-maximisation algorithm; hierarchical generative model; maximum likelihood parameter estimation; statistical framework; variational nonnegative matrix factorisation; Bayesian methods; Convergence; Image reconstruction; Inference algorithms; Matrix decomposition; Maximum likelihood estimation; Monte Carlo methods; Parameter estimation; Principal component analysis; Standards development;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th
Conference_Location :
Antalya
Print_ISBN :
978-1-4244-4435-9
Electronic_ISBN :
978-1-4244-4436-6
Type :
conf
DOI :
10.1109/SIU.2009.5136487
Filename :
5136487
Link To Document :
بازگشت