DocumentCode
2305347
Title
An Inverse Eigenvalue Problem for a Special Kind of Matrices
Author
Liu, Zhibing ; Chen, Baidi ; Wang, Kanmin
Author_Institution
Coll. of Sci., Jiujiang Univ., Jiujiang, China
fYear
2011
fDate
25-27 April 2011
Firstpage
253
Lastpage
255
Abstract
In this paper we study a kind of inverse eigen value problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the (p,p)station, 1 ≤ p ≤ n. We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
Keywords
Jacobian matrices; eigenvalues and eigenfunctions; Jacobi backward; arrow matrices forward; inverse eigenvalue problem; symmetric arrow-plus-Jacobi matrices; Eigenvalues and eigenfunctions; Inverse problems; Jacobian matrices; Nonlinear control systems; Presses; Sufficient conditions; Symmetric matrices; Eigenvalue; Matrix inverse eigenvalue problem; Symmetric Arrow-plus-Jacobi matrix;
fLanguage
English
Publisher
ieee
Conference_Titel
Information and Computing (ICIC), 2011 Fourth International Conference on
Conference_Location
Phuket Island
Print_ISBN
978-1-61284-688-0
Type
conf
DOI
10.1109/ICIC.2011.38
Filename
5954553
Link To Document