• DocumentCode
    2305347
  • Title

    An Inverse Eigenvalue Problem for a Special Kind of Matrices

  • Author

    Liu, Zhibing ; Chen, Baidi ; Wang, Kanmin

  • Author_Institution
    Coll. of Sci., Jiujiang Univ., Jiujiang, China
  • fYear
    2011
  • fDate
    25-27 April 2011
  • Firstpage
    253
  • Lastpage
    255
  • Abstract
    In this paper we study a kind of inverse eigen value problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the (p,p)station, 1 ≤ p ≤ n. We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
  • Keywords
    Jacobian matrices; eigenvalues and eigenfunctions; Jacobi backward; arrow matrices forward; inverse eigenvalue problem; symmetric arrow-plus-Jacobi matrices; Eigenvalues and eigenfunctions; Inverse problems; Jacobian matrices; Nonlinear control systems; Presses; Sufficient conditions; Symmetric matrices; Eigenvalue; Matrix inverse eigenvalue problem; Symmetric Arrow-plus-Jacobi matrix;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information and Computing (ICIC), 2011 Fourth International Conference on
  • Conference_Location
    Phuket Island
  • Print_ISBN
    978-1-61284-688-0
  • Type

    conf

  • DOI
    10.1109/ICIC.2011.38
  • Filename
    5954553