Title :
Simulation and sensitivity analysis of transmission line circuits by the characteristics method
Author :
Jun-Fa Mao ; Wang, J.M. ; Kuh, E.S.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
Abstract :
In this paper we use the method of characteristics to derive a new simulation model of lossy transmission lines, and we present the sensitivity analysis in the time-domain. The simulation model is as fast as the recursive convolution model based on moment matching and Pade´ approximation, but does not have the stability problem. The sensitivity analysis model is particularly useful for transmission line circuits containing nonlinear elements, and is believed to be the first time-domain model. Also we show that any nonlinear circuit element has a very simple linear model in sensitivity analysis. Furthermore, we demonstrate that for any circuits, the modified nodal admittance (MNA) matrices in simulation and in sensitivity analysis are the same, therefore no LU decomposition is needed in sensitivity analysis. The contributions in this paper have been implemented into a general-purpose program CSSC which shows excellent accuracy and efficiency in both simulation and sensitivity analysis of transmission line circuits.
Keywords :
circuit analysis computing; sensitivity analysis; time-domain analysis; transmission lines; Pade approximation; characteristics method; general-purpose program CSSC; lossy transmission lines; modified nodal admittance matrices; moment matching; nonlinear elements; recursive convolution model; sensitivity analysis; simulation; time-domain analysis; transmission line circuits; Admittance; Analytical models; Circuit simulation; Circuit stability; Convolution; Distributed parameter circuits; Nonlinear circuits; Propagation losses; Sensitivity analysis; Time domain analysis;
Conference_Titel :
Computer-Aided Design, 1996. ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM International Conference on
Conference_Location :
San Jose, CA, USA
Print_ISBN :
0-8186-7597-7
DOI :
10.1109/ICCAD.1996.569910