DocumentCode :
2309124
Title :
Cohen´s kappa coefficient as a performance measure for feature selection
Author :
Vieira, Susana M. ; Kaymak, Uzay ; Sousa, João M C
Author_Institution :
Dept. of Mech. Eng., Tech. Univ. of Lisbon, Lisbon, Portugal
fYear :
2010
fDate :
18-23 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
Measuring the performance of a given classifier is not a straightforward or easy task. Depending on the application, the overall classification rate may not be sufficient if one, or more, of the classes fail in prediction. This problem is also reflected in the feature selection process, especially when a wrapper method is used. Cohen´s kappa coefficient is a statistical measure of inter-rater agreement for qualitative items. It is generally thought to be a more robust measure than simple percent agreement calculation, since it takes into account the agreement occurring by chance. Considering that kappa is a more conservative measure, then its use in wrapper feature selection is suitable to test the performance of the models. This paper proposes the use of the kappa measure as an evaluation measure in a feature selection wrapper approach. In the proposed approach, fuzzy models are used to test the feature subsets and fuzzy criteria are used to formulate the feature selection problem. Results show that using the kappa measure leads to more accurate classifiers, and therefore it leads to feature subset solutions with more relevant features.
Keywords :
feature extraction; fuzzy logic; fuzzy set theory; image classification; statistical analysis; Cohen kappa coefficient; feature subsets; fuzzy models; inter-rater agreement statistical measurement; qualitative items; wrapper feature classification; wrapper feature selection process; wrapper method; Accuracy; Biological system modeling; Computational modeling; Fuzzy sets; Machine learning; Minimization; Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on
Conference_Location :
Barcelona
ISSN :
1098-7584
Print_ISBN :
978-1-4244-6919-2
Type :
conf
DOI :
10.1109/FUZZY.2010.5584447
Filename :
5584447
Link To Document :
بازگشت