DocumentCode :
23117
Title :
High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using \\hbox {HfO}_{2}/\\hbox {Al}_{2}\\hbox {O}_{3}/\\hbox {GeO}_{x}/\\hbox {Ge} Gate Stacks Fabricated by Plasma Postoxid
Author :
Rui Zhang ; Po-Chin Huang ; Ju-Chin Lin ; Taoka, Noriyuki ; Takenaka, Mitsuru ; Takagi, Shinichi
Author_Institution :
Sch. of Eng., Univ. of Tokyo, Tokyo, Japan
Volume :
60
Issue :
3
fYear :
2013
fDate :
Mar-13
Firstpage :
927
Lastpage :
934
Abstract :
An ultrathin equivalent oxide thickness (EOT) HfO2/Al2O3/Ge gate stack has been fabricated by combining the plasma postoxidation method with a 0.2-nm-thick Al2O3 layer between HfO2 and Ge for suppressing HfO2-GeOx intermixing, resulting in a low-interface-state-density (Dit) GeOx/Ge metal-oxide-semiconductor (MOS) interface. The EOT of these gate stacks has been scaled down to 0.7-0.8 nm with maintaining the Dit in 1011 cm-2·eV-1 level. The p- and n-channel MOS field-effect transistors (MOSFETs) (p- and n-MOSFETs) using this gate stack have been fabricated on (100) Ge substrates and exhibit high hole and electron mobilities. It is found that the Ge p- and n-MOSFETs exhibit peak hole mobilities of 596 and 546 cm2/V·s and peak electron mobilities of 754 and 689 cm2/V·s at EOTs of 0.82 and 0.76 nm, respectively, which are the record-high reports so far for Ge MOSFETs in subnanometer EOT range because of the sufficiently passivated Ge MOS interfaces in present HfO2/Al2O3/GeOx/Ge gate stacks.
Keywords :
MOSFET; alumina; electron mobility; elemental semiconductors; germanium; germanium compounds; hafnium compounds; high-k dielectric thin films; hole mobility; oxidation; plasma materials processing; Ge; HfO2-Al2O3-GeOx-Ge; electron mobility; gate stacks; high-mobility p-MOSFET; hole mobility; low-interface-state-density; metal-oxide-semiconductor interface; n-MOSFET; n-channel MOS field-effect transistors; plasma postoxidation method; size 0.2 nm; size 0.7 nm; size 0.76 nm; size 0.82 nm; subnanometer EOT range; ultrathin equivalent oxide thickness; Aluminum oxide; Gold; Hafnium compounds; Logic gates; MOS capacitors; MOSFET circuits; MOSFETs; Equivalent oxide thickness (EOT); germanium; metal–oxide–semiconductor (MOS) field-effect transistor (MOSFET); mobility;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2013.2238942
Filename :
6417018
Link To Document :
بازگشت