DocumentCode :
231379
Title :
Learning quantum operator by quantum adiabatic computation
Author :
Ding Liu ; Minghu Jiang
Author_Institution :
Sch. of Comput. Sci. & Software Eng., Tianjin Polytech. Univ., Tianjin, China
fYear :
2014
fDate :
19-23 Oct. 2014
Firstpage :
63
Lastpage :
67
Abstract :
In this article, we introduce the quantum adiabatic computation to the research field of quantum operator learning. Compared with existing conventional optimization approaches, the adiabatic algorithm ensures to reach the global optimal solution, and thus avoids the local minimum problem. The performance of the experiments on two tasks indicates the feasibility and potentiality of this novel method. We firmly believe that the quantum adiabatic computation can be applied to other tasks of machine learning.
Keywords :
learning (artificial intelligence); optimisation; quantum computing; quantum theory; global optimal solution; local minimum problem; machine learning tasks; quantum adiabatic computation; quantum operator learning problem; research field; Approximation algorithms; Logic gates; Optimization; Quantum computing; Stationary state; Vectors; machine learning; quantum adiabatic computation; quantum operator learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing (ICSP), 2014 12th International Conference on
Conference_Location :
Hangzhou
ISSN :
2164-5221
Print_ISBN :
978-1-4799-2188-1
Type :
conf
DOI :
10.1109/ICOSP.2014.7014970
Filename :
7014970
Link To Document :
بازگشت