DocumentCode :
2320003
Title :
Point cloud segmentation towards urban ground modeling
Author :
Hernández, Jorge ; Marcotegui, Beatriz
Author_Institution :
CMM- Centre de Morphologie Math., Mines ParisTech, Fontainebleau
fYear :
2009
fDate :
20-22 May 2009
Firstpage :
1
Lastpage :
5
Abstract :
This paper presents a new method for segmentation and interpretation of 3D point clouds from mobile LIDAR data. The main contribution of this work is the automatic detection and classification of artifacts located at the ground level. The detection is based on Top-Hat of hole filling algorithm of range images. Then, several features are extracted from the detected connected components (CCs). Afterward, a stepwise forward variable selection by using Wilk´s Lambda criterion is performed. Finally, CCs are classified in four categories (lampposts, pedestrians, cars, the others) by using a SVM machine learning method.
Keywords :
feature extraction; geophysical techniques; image segmentation; optical radar; remote sensing by radar; support vector machines; SVM machine learning method; Top-Hat; Wilk´s Lambda criterion; artifacts detection; automatic classification; automatic detection; connected components; feature extraction; hole filling algorithm; mobile LIDAR data; point cloud segmentation method; urban ground modeling; Carbon capture and storage; Clouds; Data mining; Feature extraction; Filling; Image segmentation; Input variables; Laser radar; Machine learning algorithms; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Urban Remote Sensing Event, 2009 Joint
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-3460-2
Electronic_ISBN :
978-1-4244-3461-9
Type :
conf
DOI :
10.1109/URS.2009.5137562
Filename :
5137562
Link To Document :
بازگشت