DocumentCode :
232151
Title :
Chirp parameter estimation from tensor decomposition
Author :
Ge Mingyuan ; Wei Guohua ; Zhou Xinpeng
Author_Institution :
Sch. of Inf. & Electron., Beijing Inst. of Technol., Beijing, China
fYear :
2014
fDate :
19-23 Oct. 2014
Firstpage :
2057
Lastpage :
2062
Abstract :
The non-stationary properties of chirp signals restrict the application of the parameter estimation algorithms of single-frequency signals in the scene of chirp signals, simultaneously the traditional chirp parameter estimation algorithms also have limitations, to overcome some of the limitations this paper proposes a new algorithm which can estimate chirp parameter from tensor decomposition. The new algorithm uses the received discrete data aligning according to a certain form to build multidimensional data structures and then applies the tensor decomposition in chip parameter estimation using the shift invariance of subspace, the algorithm provides a new way of thinking in the field of chirp parameter estimation and it can apply in the scene of multiple chirp signals, the simulations prove the effectiveness of the algorithm.
Keywords :
matrix decomposition; signal processing; tensors; chirp parameter estimation; chirp signals; discrete data aligning; multidimensional data structures; single frequency signals; tensor decomposition; Bandwidth; Chirp; Matrix decomposition; Parameter estimation; Signal processing algorithms; Signal to noise ratio; Tensile stress; chirp; parameter estimation; tensor decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing (ICSP), 2014 12th International Conference on
Conference_Location :
Hangzhou
ISSN :
2164-5221
Print_ISBN :
978-1-4799-2188-1
Type :
conf
DOI :
10.1109/ICOSP.2014.7015356
Filename :
7015356
Link To Document :
بازگشت