DocumentCode :
2323663
Title :
An Empirical Study of Multi-label Learning Methods for Video Annotation
Author :
Dimou, Anastasios ; Tsoumakas, Grigorios ; Mezaris, Vasileios ; Kompatsiaris, Ioannis ; Vlahavas, Ioannis
Author_Institution :
Inf. & Telematics Inst., Thessaloniki
fYear :
2009
fDate :
3-5 June 2009
Firstpage :
19
Lastpage :
24
Abstract :
This paper presents an experimental comparison of different approaches to learning from multi-labeled video data. We compare state-of-the-art multi-label learning methods on the Media mill Challenge dataset. We employ MPEG-7 and SIFT-based global image descriptors independently and in conjunction using variations of the stacking approach for their fusion. We evaluate the results comparing the different classifiers using both MPEG-7 and SIFT-based descriptors and their fusion. A variety of multi-label evaluation measures is used to explore advantages and disadvantages of the examined classifiers. Results give rise to interesting conclusions.
Keywords :
data compression; image classification; image fusion; learning (artificial intelligence); transforms; video coding; MPEG-7; SIFT-based global image descriptor; image fusion; multilabel classification; multilabel learning method; video annotation; Backpropagation algorithms; Classification algorithms; Indexing; Informatics; Learning systems; MPEG 7 Standard; Nearest neighbor searches; Robustness; Stacking; Telematics; multi-label learning; video annotation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Content-Based Multimedia Indexing, 2009. CBMI '09. Seventh International Workshop on
Conference_Location :
Chania
Print_ISBN :
978-1-4244-4265-2
Electronic_ISBN :
978-0-7695-3662-0
Type :
conf
DOI :
10.1109/CBMI.2009.37
Filename :
5137810
Link To Document :
بازگشت