Title :
Strong consistency of parameter estimates for purely explosive autoregressive models with exogenous inputs
Author :
Taiyao Wang ; Bo Qi
Author_Institution :
Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
Abstract :
Asymptotic properties and strong consistency in the analysis of recursive estimation for stochastic regression models are important and fundamental. However, almost all of the existing results concerning the strong consistency of the least-squares estimates are established for non-explosive autoregressive models with exogenous inputs under the persistent excitation condition. In this paper, we establish the strong consistency of least-squares parameter estimates for explosive autoregressive models with persistently exciting exogenous inputs.
Keywords :
autoregressive processes; least squares approximations; parameter estimation; recursive estimation; regression analysis; asymptotic properties; exogenous input excitation; explosive autoregressive models; least-squares parameter estimates; nonexplosive autoregressive models; parameter estimation strong consistency; persistent excitation condition; recursive estimation analysis; stochastic regression models; Biological system modeling; Explosives; Mathematical model; Polynomials; Stochastic processes; Vectors; ARX Models; Least-squares Estimates; Purely Explosive; Strong Consistency;
Conference_Titel :
Control Conference (CCC), 2014 33rd Chinese
Conference_Location :
Nanjing
DOI :
10.1109/ChiCC.2014.6896080