DocumentCode :
232561
Title :
Strong consistency of parameter estimates for purely explosive autoregressive models with exogenous inputs
Author :
Taiyao Wang ; Bo Qi
Author_Institution :
Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
fYear :
2014
fDate :
28-30 July 2014
Firstpage :
6588
Lastpage :
6592
Abstract :
Asymptotic properties and strong consistency in the analysis of recursive estimation for stochastic regression models are important and fundamental. However, almost all of the existing results concerning the strong consistency of the least-squares estimates are established for non-explosive autoregressive models with exogenous inputs under the persistent excitation condition. In this paper, we establish the strong consistency of least-squares parameter estimates for explosive autoregressive models with persistently exciting exogenous inputs.
Keywords :
autoregressive processes; least squares approximations; parameter estimation; recursive estimation; regression analysis; asymptotic properties; exogenous input excitation; explosive autoregressive models; least-squares parameter estimates; nonexplosive autoregressive models; parameter estimation strong consistency; persistent excitation condition; recursive estimation analysis; stochastic regression models; Biological system modeling; Explosives; Mathematical model; Polynomials; Stochastic processes; Vectors; ARX Models; Least-squares Estimates; Purely Explosive; Strong Consistency;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2014 33rd Chinese
Conference_Location :
Nanjing
Type :
conf
DOI :
10.1109/ChiCC.2014.6896080
Filename :
6896080
Link To Document :
بازگشت