DocumentCode :
2325666
Title :
Optimal v-SVM parameter estimation using multi objective evolutionary algorithms
Author :
Ethridge, James ; Ditzler, Gregory ; Polikar, Robi
Author_Institution :
Dept. of Electr. & Comput. Eng., Rowan Univ., Glassboro, NJ, USA
fYear :
2010
fDate :
18-23 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
Using a machine learning algorithm for a given application often requires tuning design parameters of the classifier to obtain optimal classification performance without overfitting. In this contribution, we present an evolutionary algorithm based approach for multi-objective optimization of the sensitivity and specificity of a v-SVM. The v-SVM is often preferred over the standard C-SVM due to smaller dynamic range of the v parameter compared to the unlimited dynamic range of the C parameter. Instead of looking for a single optimization result, we look for a set of optimal solutions that lie along the Pareto optimality front. The traditional advantage of using the Pareto optimality is of course the flexibility to choose any of the solutions that lies on the Pareto optimality front. However, we show that simply maximizing sensitivity and specificity over the Pareto front leads to parameters that appear to be mathematically optimal yet still cause overfitting. We propose a multiple objective optimization approach with three objective functions to find additional parameter values that do not cause overfitting.
Keywords :
Pareto optimisation; evolutionary computation; learning (artificial intelligence); parameter estimation; pattern classification; support vector machines; Pareto optimality; machine learning algorithm; multiobjective evolutionary algorithm; optimal v-SVM parameter estimation; Classification algorithms; Databases; Kernel; Optimization; Sensitivity; Sensitivity and specificity; Support vector machines; evolutionary algorithms; multi-objective optimization; v-SVM;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2010 IEEE Congress on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-6909-3
Type :
conf
DOI :
10.1109/CEC.2010.5586029
Filename :
5586029
Link To Document :
بازگشت