Title :
Combining multiobjective and single-objective genetic algorithms in heterogeneous island model
Author :
Pilát, Martin ; Neruda, Roman
Author_Institution :
Dept. of Theor. Comput. Sci. & Math. Logic, Charles Univ., Prague, Czech Republic
Abstract :
The majority of multiobjective genetic algorithms is computationally expensive, therefore they often need to be parallelized before they can be used to solve practical tasks. Parallelization of multiobjective genetic algorithms is a relatively studied area, but no clearly winning approach has appeared yet. In this paper we present a novel parallel hybrid algorithm which combines multiobjective and single-objective genetic algorithms. We show that this algorithm can be successfully used to solve multiobjective optimization problems while outperforming more traditional parallel versions of multiobjective genetic algorithms.
Keywords :
genetic algorithms; heterogeneous island model; multiobjective genetic algorithm; multiobjective optimization problem; parallel hybrid algorithm; single-objective genetic algorithm; Approximation methods; Computational modeling; Evolutionary computation; Mathematical model; Measurement; Minimization; Optimization;
Conference_Titel :
Evolutionary Computation (CEC), 2010 IEEE Congress on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-6909-3
DOI :
10.1109/CEC.2010.5586075