DocumentCode :
2327470
Title :
Detecting failure of antenna array elements using machine learning optimization
Author :
Xu, Nan ; Christodoulou, C.G. ; Barbin, S.E. ; Martinez-Ramón, M.
Author_Institution :
Univ. of New Mexico, Albuquerque
fYear :
2007
fDate :
9-15 June 2007
Firstpage :
5753
Lastpage :
5756
Abstract :
A Multi-class support vector classifier (SVC) is proposed for planar array failure diagnosis. Extracted feature information from the far field intensity of the array is used to train and test the multi-class SVC, so one can detect the location of failed elements in an array and also the level of failure.
Keywords :
antenna arrays; electronic engineering computing; learning (artificial intelligence); support vector machines; antenna array elements; detecting failure; machine learning optimization; multi class; planar array failure diagnosis; support vector classifier; Antenna arrays; Antenna measurements; Data mining; Feature extraction; Lagrangian functions; Machine learning; Static VAr compensators; Support vector machine classification; Support vector machines; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Antennas and Propagation Society International Symposium, 2007 IEEE
Conference_Location :
Honolulu, HI
Print_ISBN :
978-1-4244-0877-1
Electronic_ISBN :
978-1-4244-0878-8
Type :
conf
DOI :
10.1109/APS.2007.4396858
Filename :
4396858
Link To Document :
بازگشت