• DocumentCode
    2330375
  • Title

    Modeling nonlinear neural dynamics with Volterra-Poisson kernels

  • Author

    Courellis, S.H. ; Gholmieh, G. ; Marmarelis, V.Z. ; Berger, T.W.

  • Author_Institution
    Dept. of Biomed. Eng., Southern California Univ., Los Angeles, CA, USA
  • Volume
    4
  • fYear
    2004
  • fDate
    25-29 July 2004
  • Firstpage
    3219
  • Abstract
    A nonparametric quantitative model is introduced that captures the nonlinear dynamic properties of neural systems using input/output data. It is based on the Volterra modeling approach adapted for point-process inputs and outputs. Using input/output data, a model is presented for the CAl region of the hippocampus. The model represents reliably the nonlinear dynamic mapping performed by CAI with high accuracy. Compared to traditional descriptors of nonlinear neural dynamics, the presented model provides a generalized, comprehensive view.
  • Keywords
    Poisson equation; Volterra series; neural nets; nonlinear dynamical systems; Volterra modeling approach; Volterra-Poisson kernel; nonlinear neural dynamic; nonparametric quantitative model; point-process input; point-process output; Biological system modeling; Delay; Hippocampus; Information processing; Kernel; Mathematical model; Mechanical factors; Parametric statistics; Predictive models; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
  • Conference_Location
    Budapest
  • ISSN
    1098-7576
  • Print_ISBN
    0-7803-8359-1
  • Type

    conf

  • DOI
    10.1109/IJCNN.2004.1381193
  • Filename
    1381193