• DocumentCode
    2332941
  • Title

    A Markov-Chain Monte-Carlo Approach to Musical Audio Segmentation

  • Author

    Rhodes, Christophe ; Casey, Michael ; Abdallah, Samer ; Sandler, Mark

  • Author_Institution
    Goldsmiths Coll., London Univ.
  • Volume
    5
  • fYear
    2006
  • fDate
    14-19 May 2006
  • Abstract
    This paper describes a method for automatically segmenting and labelling sections in recordings of musical audio. We incorporate the user´s expectations for segment duration as an explicit prior probability distribution in a Bayesian framework, and demonstrate experimentally that this method can produce accurate labelled segmentations for popular music
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; audio signal processing; music; statistical distributions; Bayesian framework; Markov-chain Monte-Carlo approach; musical audio segmentation; prior probability distribution; Audio recording; Bayesian methods; Data mining; Educational institutions; Hidden Markov models; Histograms; Labeling; Music; Noise reduction; Probability distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
  • Conference_Location
    Toulouse
  • ISSN
    1520-6149
  • Print_ISBN
    1-4244-0469-X
  • Type

    conf

  • DOI
    10.1109/ICASSP.2006.1661396
  • Filename
    1661396