DocumentCode :
2335727
Title :
Heuristic optimization for decentralized frequent itemset counting
Author :
Jensen, Viviane Crestana ; Soparkar, Nandit
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
fYear :
2001
fDate :
2001
Firstpage :
613
Lastpage :
614
Abstract :
The choices for mining of decentralized data are numerous, and we have developed techniques to enumerate and optimize decentralized frequent itemset counting. We introduce our heuristic approach to improve the performance of such techniques developed in ways similar to query processing in database systems. We also describe empirical results that validate our heuristic techniques
Keywords :
data mining; distributed algorithms; heuristic programming; optimisation; query processing; very large databases; database systems; decentralized data mining; decentralized frequent itemset counting; heuristic approach; heuristic optimization; heuristic techniques; query processing; Algebra; Computer science; Cost function; Data mining; Database systems; Demography; Itemsets; Merging; Partitioning algorithms; Query processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
0-7695-1119-8
Type :
conf
DOI :
10.1109/ICDM.2001.989579
Filename :
989579
Link To Document :
بازگشت