DocumentCode :
2337625
Title :
Lower bounds on expected redundancy
Author :
Yu, Bin
Author_Institution :
Dept. of Stat., California Univ., Berkeley, CA, USA
fYear :
1994
fDate :
27-29 Oct 1994
Firstpage :
15
Abstract :
This paper focuses on lower bound results on expected redundancy for universal compression of i.i.d. data from parametric and nonparametric families. Two types of lower bounds are reviewed. One is Rissanen´s almost pointwise lower bound and its extension to the nonparametric case. The other is minimax lower bounds, for which a new proof is given in the nonparametric case
Keywords :
data compression; minimax techniques; redundancy; stochastic processes; IID data; Rissanen´s lower bound; expected redundancy; lower bounds; minimax lower bounds; nonparametric families; parametric families; universal compression; Estimation error; Hypercubes; Minimax techniques; Mutual information; Parametric statistics; Redundancy; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and Statistics, 1994. Proceedings., 1994 IEEE-IMS Workshop on
Conference_Location :
Alexandria, VA
Print_ISBN :
0-7803-2761-6
Type :
conf
DOI :
10.1109/WITS.1994.513857
Filename :
513857
Link To Document :
بازگشت