DocumentCode :
2340674
Title :
Combining multiple non-homogeneous classifiers: an empirical approach
Author :
Parker, J.R.
Author_Institution :
Dept. of Comput. Sci., Calgary Univ., Alta., Canada
fYear :
2002
fDate :
2002
Firstpage :
288
Lastpage :
292
Abstract :
The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for merging multiple classifiers. In particular a ranking of possible classes can be produced which can allow Borda type reconciliation methods to be applied. A simulation of multiple classifiers is used to evaluate this idea, and compare with three other classifier combination techniques.
Keywords :
merging; pattern classification; probability; confusion matrix; merging; multiple nonhomogeneous classifiers; probability; reconciliation methods; simulation; Cognitive informatics; Computer science; Computer vision; Laboratories; Nominations and elections; Position measurement; Voting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cognitive Informatics, 2002. Proceedings. First IEEE International Conference on
Print_ISBN :
0-7695-1724-2
Type :
conf
DOI :
10.1109/COGINF.2002.1039309
Filename :
1039309
Link To Document :
بازگشت