DocumentCode :
2344410
Title :
Parallel differential algorithms for fermentation process
Author :
Manyri, Laurent ; Doncescu, Andrei ; Roux, Gilles ; Dahhou, Boutaieb
Author_Institution :
Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
fYear :
2002
fDate :
2002
Firstpage :
414
Lastpage :
418
Abstract :
In biotechnology the estimation of the kinetic parameters needs a lot of approximation due to the non-linearity of the system and to the important number of model parameters. Therefore, the computation time increases with the complexity of the problem. We present the performances of the DE (differential evolution), which is a part of EA (evolutionary algorithms) based on GA (genetic algorithms) applied to estimate the parameters model of the fermentation bioprocess. The master-slave scheme ameliorates the time computation allowing us to know the physiological states of the yeast.
Keywords :
biotechnology; fermentation; genetic algorithms; parallel algorithms; parameter estimation; state estimation; biotechnology; differential evolution; evolutionary algorithms; fermentation process; genetic algorithms; kinetic parameters estimation; master-slave scheme; parallel differential algorithms; physiological states; yeast; Biological system modeling; Change detection algorithms; Evolution (biology); Evolutionary computation; Fungi; Master-slave; Optimization methods; Parameter estimation; Robustness; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing Workshops, 2002. Proceedings. International Conference on
ISSN :
1530-2016
Print_ISBN :
0-7695-1680-7
Type :
conf
DOI :
10.1109/ICPPW.2002.1039759
Filename :
1039759
Link To Document :
بازگشت