Title :
A risk analysis method for carbon price prediction with hybrid intelligent model in consideration of variable selection of graphical modeling
Author :
Mori, Hiroyuki ; Jiang, Wenjun
Author_Institution :
Dept. of Electron. & Bioinf., Meiji Univ., Kawasaki
Abstract :
This paper proposes a new risk assessment method for short-term carbon price prediction model. In this paper, a hybrid intelligent method of DA clustering and artificial neural network (ANN) is presented as a predictor of short-term carbon price. DA clustering plays a key role to classify input data into clusters. ANN is useful for predicting one-step ahead carbon price at each cluster. Graphical modeling is used to select meaningful input variables and provide more realistic relationship between input and output variables in the prediction model. To evaluate the uncertainty of the day-ahead carbon low, Monte-Carol simulation is carried out to generate sufficient realistic pseudo-scenarios with the multivariate normal random number. The proposed method is successfully applied to the real market data.
Keywords :
Monte Carlo methods; computer graphics; neural nets; power markets; power system economics; risk analysis; DA clustering; Monte-Carlo simulation; artificial neural network; graphical modeling; hybrid intelligent model; multivariate normal random number; risk analysis; short-term carbon price prediction model; Artificial intelligence; Artificial neural networks; Carbon dioxide; Input variables; Manufacturing industries; Power system modeling; Predictive models; Risk analysis; Time series analysis; Uncertainty;
Conference_Titel :
Sustainable Energy Technologies, 2008. ICSET 2008. IEEE International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1887-9
Electronic_ISBN :
978-1-4244-1888-6
DOI :
10.1109/ICSET.2008.4747156