DocumentCode :
2348975
Title :
Clustering high dimensional data streams at multiple time granularities
Author :
Yan Xiao-Long ; Shen, Hong
Author_Institution :
Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Hefei
fYear :
2008
fDate :
3-5 June 2008
Firstpage :
2458
Lastpage :
2463
Abstract :
In this paper, we extend our DGStream (dense grid-tree based data stream clustering) method which is developed recently [Yan Xiaolong, et al., 2007] and propose a new method DGMStream (dense grid-tree based multiple time granularity adaptable data stream clustering) to cluster dynamic data streams. In DGMStream, we incorporate the technique of tilted time window in DGStream to find clusters for data streams over multiple time granularities. Implementation results show that this method has a better cluster purity and scalability than other methods.
Keywords :
data handling; data mining; pattern clustering; DGStream; clustering high dimensional data streams; dense grid-tree; multiple time granularity adaptable data stream clustering; Algorithm design and analysis; Clustering algorithms; Computer science; Data mining; Scalability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1717-9
Electronic_ISBN :
978-1-4244-1718-6
Type :
conf
DOI :
10.1109/ICIEA.2008.4582959
Filename :
4582959
Link To Document :
بازگشت