DocumentCode :
2351805
Title :
Dynamic clustering for acoustic target tracking in wireless sensor networks
Author :
Chen, Wei-Peng ; Hou, Jennifer C. ; Sha, Lui
Author_Institution :
Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
fYear :
2003
fDate :
4-7 Nov. 2003
Firstpage :
284
Lastpage :
294
Abstract :
In the paper, we devise and evaluate a fully decentralized, light-weight, dynamic clustering algorithm for target tracking. Instead of assuming the same role for all the sensors, we envision a hierarchical sensor network that is composed of (a) a static backbone of sparsely placed high-capability sensors which assume the role of a cluster head (CH) upon triggered by certain signal events; and (b) moderately to densely populated low-end sensors whose function is to provide sensor information to CHs upon request. A cluster is formed and a CH becomes active, when the acoustic signal strength detected by the CH exceeds a pre-determined threshold. The active CH then broadcasts an information solicitation packet, asking sensors in its vicinity to join the cluster and provide their sensing information. We address and devise solution approaches (with the use of Voronoi diagram) to realize dynamic clustering: (I1) how CHs cooperate with one another to ensure that for the most of time only one CH (preferably the CH that is closest to the target) is active; (I2) when the active CH solicits for sensor information, instead of having all the sensors in its vicinity reply, only a sufficient number of sensors respond with non-redundant, essential information to determine the target location; and (I3) both packets with which sensors respond to their CHs and packets that CHs report to subscribers do not incur significant collision. Through both probabilistic analysis and ns-2 simulation, we show with the use of Voronoi diagram, the CH that is usually closest to the target is (implicitly) selected as the leader and that the proposed dynamic clustering algorithm effectively eliminates contention among sensors and renders more accurate estimates of target locations as a result of better quality data collected and less collision incurred.
Keywords :
acoustic signal processing; computational geometry; probability; target tracking; wireless sensor networks; Voronoi diagram; acoustic target tracking; dynamic clustering algorithm; hierarchical sensor network; ns-2 simulation; probabilistic analysis; wireless sensor networks; Acoustic sensors; Acoustic signal detection; Algorithm design and analysis; Broadcasting; Clustering algorithms; Heuristic algorithms; Signal detection; Spine; Target tracking; Wireless sensor networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Network Protocols, 2003. Proceedings. 11th IEEE International Conference on
ISSN :
1092-1648
Print_ISBN :
0-7695-2024-3
Type :
conf
DOI :
10.1109/ICNP.2003.1249778
Filename :
1249778
Link To Document :
بازگشت