Title :
Effect of size on electrical performance
Author :
Hampton, R.N. ; Smedberg, A. ; Wald, D.F.
Author_Institution :
Borealis AB, Stenungsund
Abstract :
The electrical breakdown performance, either unaged or after ageing (laboratory or service), is often used as the basis for qualification of a device, design or material. Many of the features that affect these performance levels have been discussed in other documents; contaminants, propensity for water treeing, insulating and semiconducting materials. However the size of cable tested is rarely discussed. This is somewhat surprising as it has been long recognized that electrical failure is an extreme value (the Weibull distribution is a member of this family) or weakest link process. In extreme value processes the performance of the whole device is determined by the single "weakest link". Thus when more "weak links" are present the chance of failure is consequently higher: the measured performance depends on weak link concentration or size of the device. Additionally at some dimensions the thickness of the dielectric can influence the breakdown mechanism itself; especially if the thermal influences are present. This paper will attempt to discuss a number of these size related issues for both AC & impulse conditions; these will include: 1) the effect of the dielectric volume actual mechanism of failure, 2) prediction of performance on service length cables from short length laboratory tests. This has practical relevance on the selection of appropriate qualification levels which will have direct relevance to service performance, 3) the requirements for cable quality when increasing the size (thickness or length) installed
Keywords :
dielectric materials; failure analysis; power cable insulation; power cable testing; ageing; cable testing; dielectric thickness; electrical breakdown performance; electrical failure; size effect; weakest link process; Aging; Dielectrics; Electric breakdown; Laboratories; Power cable insulation; Power cables; Qualifications; Semiconductivity; Semiconductor materials; Trees - insulation;
Conference_Titel :
Electrical Insulation, 2006. Conference Record of the 2006 IEEE International Symposium on
Conference_Location :
Toronto, Ont.
Print_ISBN :
1-4244-0333-2
DOI :
10.1109/ELINSL.2006.1665249