Title :
Dielectric breakdown strength of GFRPs under mechanical stresses in cryogenic liquids
Author :
Fukushi, K. ; Nagai, M. ; Kamata, Y.
Author_Institution :
Hitachi Ltd., Ibaraki, Japan
fDate :
29 Oct-2 Nov 1989
Abstract :
The dielectric strength of GFRPs (glass-fiber-reinforced plastics) under combined application of electrical and mechanical stresses was investigated in liquid He, liquid N2, and silicone oil at room temperature. With the combined application of tensile and electrical stresses in cryogenic liquids, the dielectric breakdown of GFRPs occurred prior to mechanical breakdown when the applied electrical stress was lower than the DBS (dielectric breakdown strength) of GFRPs without tensile stress. In the case of tensile stress application under constantly applied electrical stress, the DBS and GFRPs decreased markedly. The reason for the large DBS decrease of GFRPs was the occurrence of microcracks in matrix resins because of their brittleness at cryogenic temperatures. Combining GFRP with polyimide film in cryogenic liquids lessened the decrease in DBS. Compared with tensile stress application, the influence of compressive stress on the DBS of GFRPs was very small
Keywords :
composite insulating materials; electric breakdown of solids; electric strength; glass fibre reinforced plastics; insulation testing; compressive stress; cryogenic liquids; dielectric breakdown; dielectric strength; electrical stresses; glass fibre reinforced plastics; matrix resins; mechanical stresses; microcracks; polyimide film; tensile stress; Cryogenics; Dielectric breakdown; Dielectric liquids; Helium; Petroleum; Plastics; Resins; Satellite broadcasting; Temperature; Tensile stress;
Conference_Titel :
Electrical Insulation and Dielectric Phenomena, 1989. Annual Report., Conference on
Conference_Location :
Leesburg, VA
DOI :
10.1109/CEIDP.1989.69591