DocumentCode :
2361605
Title :
Hierarchical clustering for unstructured volumetric scalar fields
Author :
Co, Christopher S. ; Heckel, Bjoern ; Hagen, Hans ; Hamann, Bernd ; Joy, Kenneth I.
Author_Institution :
Dept. of Comput. Sci., Univ. of California, Davis, CA, USA
fYear :
2003
fDate :
24-24 Oct. 2003
Firstpage :
325
Lastpage :
332
Abstract :
We present a method to represent unstructured scalar fields at multiple levels of detail. Using a parallelizable classification algorithm to build a cluster hierarchy, we generate a multiresolution representation of a given volumetric scalar data set. The method uses principal component analysis (PCA) for cluster generation and a fitting technique based on radial basis functions (RBFs). Once the cluster hierarchy has been generated, we utilize a variety of techniques for extracting different levels of detail. The main strength of this work is its generality. Regardless of grid type, this method can be applied to any discrete scalar field representation, even one given as a "point cloud".
Keywords :
algorithm theory; data visualisation; principal component analysis; rendering (computer graphics); solid modelling; PCA; cluster generation; cluster hierarchy; hierarchical clustring; multiresolution representation; parallelizable classification algorithm; point cloud; principal component analysis; radial basis function; scalar field representation; unstructure volumetric scalar fields; volumetric scalar data set; Binary trees; Computational geometry; Computer graphics; Computer science; Data mining; Data visualization; Image processing; Principal component analysis; Scattering; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visualization, 2003. VIS 2003. IEEE
Conference_Location :
Seattle, WA, USA
Print_ISBN :
0-7803-8120-3
Type :
conf
DOI :
10.1109/VISUAL.2003.1250389
Filename :
1250389
Link To Document :
بازگشت