DocumentCode :
2362445
Title :
Adaptive inverse quadratics interpolation with applications to vector fitting and the hankel transform of spectral domain green’s functions
Author :
Knockaert, L. ; De Zutter, D.
Author_Institution :
Ghent Univ., Ghent
fYear :
2007
fDate :
26-28 Sept. 2007
Firstpage :
1
Lastpage :
5
Abstract :
In this contribution we discuss the translation- invariant interpolation of univariate functions by means of inverse quadratics radial basis functions. For the implementation we use an adaptive interpolation process which is a variant of a recently introduced adaptive residual subsampling method. It is shown that the interpolation process with the inverse quadratics kernel also provides an excellent pre-processing interface when used in conjunction with the popular vector fitting algorithm. This results in a composite algorithm, performing the sampling and modelling of the given function in a fully automatic way. It also provides a platform for calculating the Hankel transform of spectral domain Green´s functions.
Keywords :
Green´s function methods; Hankel transforms; interpolation; spectral-domain analysis; Hankel transform; adaptive interpolation process; adaptive inverse quadratics interpolation; adaptive residual subsampling method; inverse quadratics kernel; inverse quadratics radial basis functions; spectral domain Green´s functions; translation-invariant interpolation; univariate functions; vector fitting; Biomedical imaging; Electromagnetic scattering; Gaussian processes; Green´s function methods; Information technology; Interpolation; Kernel; Neural networks; Nonhomogeneous media; Sampling methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
AFRICON 2007
Conference_Location :
Windhoek
Print_ISBN :
978-1-4244-0986-0
Electronic_ISBN :
978-1-4244-0987-7
Type :
conf
DOI :
10.1109/AFRCON.2007.4401441
Filename :
4401441
Link To Document :
بازگشت