DocumentCode :
2364829
Title :
A Multi-Level Algorithm For Partitioning Graphs
Author :
Hendrickson, Bruce ; Leland, Robert
Author_Institution :
Sandia National Laboratories
fYear :
1995
fDate :
1995
Firstpage :
28
Lastpage :
28
Abstract :
The graph partitioning problem is that of dividing the vertices of a graph into sets of specified sizes such that few edges cross between sets. This NP-complete problem arises in many important scientific and engineering problems. Prominent examples include the decomposition of data structures for parallel computation, the placement of circuit elements and the ordering of sparse matrix computations. We present a multilevel algorithm for graph partitioning in which the graph is approximated by a sequence of increasingly smaller graphs. The smallest graph is then partitioned using a spectral method, and this partition is propagated back through the hierarchy of graphs. A variant of the Kernighan-Lin algorithm is applied periodically to refine the partition. The entire algorithm can be implemented to execute in time proportional to the size of the original graph. Experiments indicate that, relative to other advanced methods, the multilevel algorithm produces high quality partitions at low cost.
Keywords :
circuit placement; graph partitioning; load balancing; parallel computation; Circuits; Concurrent computing; Costs; Data structures; Laboratories; Load management; NP-complete problem; Partitioning algorithms; Permission; Sparse matrices; circuit placement; graph partitioning; load balancing; parallel computation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Supercomputing, 1995. Proceedings of the IEEE/ACM SC95 Conference
Print_ISBN :
0-89791-816-9
Type :
conf
DOI :
10.1109/SUPERC.1995.242799
Filename :
1383164
Link To Document :
بازگشت