DocumentCode :
2365019
Title :
Estimation with Intermittent Observation Using Both a Priori and a Posteriori Information
Author :
Seong, Sang Man ; Kim, Tae Whan ; Whang, Ick Ho
Author_Institution :
Korea Univ. of Tech. & Educ., South Korea
fYear :
2009
fDate :
25-27 Aug. 2009
Firstpage :
437
Lastpage :
440
Abstract :
For the systems in which missing observation occurs, we drive a new estimator which uses a priori information in state update and a posteriori information in covariance update. The resulting filter is a minimum variance filter which minimizes the expectation of error covariance with respect to noises and the random variable representing missing observation. The merit of presented filter is that the covariance update equation does not include random variable representing missing observation and hence the covariance can be calculated off-line in time invariant system.
Keywords :
filtering theory; a posteriori information; a priori information; covariance update; error covariance; intermittent observation; minimum variance filter; missing observation; random variable; time invariant system; Covariance matrix; Equations; Filters; Linear systems; Random variables; Recursive estimation; State estimation; Time invariant systems; Uncertainty; Vectors; estimation priori information; intermittent observation; posteriori information; sensor networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
INC, IMS and IDC, 2009. NCM '09. Fifth International Joint Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-5209-5
Electronic_ISBN :
978-0-7695-3769-6
Type :
conf
DOI :
10.1109/NCM.2009.369
Filename :
5331683
Link To Document :
بازگشت