DocumentCode :
2365133
Title :
Random frames from binary linear block codes
Author :
Babadi, Behtash ; Tarokh, Vahid
Author_Institution :
Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA
fYear :
2010
fDate :
17-19 March 2010
Firstpage :
1
Lastpage :
3
Abstract :
Let C be an [n, k, d] binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2n). Let d¿ denote the minimum Hamming distance of the dual code of C over GF(2n). Let ¿ : GF(2n) ¿ {-1, 1}n be the component-wise mapping ¿(vi) := (-1)vi , for v =(v1, v2, ... , vn) ¿ GF(2n). Finally, for p < n, let ¿C be a p × n random matrix whose rows are obtained by mapping a uniformly drawn set of size p of the codewords of C under e. Recently, the authors have established that for d¿ large enough and y := p/n ¿ (0, 1) fixed, as n ¿ ¿ the empirical eigen-distribution of the Gram matrix of 1/¿n times ¿C resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko-Pastur distribution). In this paper, we overview this result and discuss its implications on the design of frames for compressed sensing applications.
Keywords :
Galois fields; binary codes; block codes; linear codes; matrix algebra; binary linear block codes; codewords; component-wise mapping; compressed sensing application; dual code; eigen-distribution; gram matrix; minimum Hamming distance; random frames; random matrix; Block codes; Compressed sensing; Hamming distance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Sciences and Systems (CISS), 2010 44th Annual Conference on
Conference_Location :
Princeton, NJ
Print_ISBN :
978-1-4244-7416-5
Electronic_ISBN :
978-1-4244-7417-2
Type :
conf
DOI :
10.1109/CISS.2010.5464847
Filename :
5464847
Link To Document :
بازگشت