DocumentCode :
2369092
Title :
Nonlinearity parameters for the classification of high risk myocardial infarction subjects
Author :
Signorini, Maria G. ; Lombardi, Federico ; Cerutti, Sergio
Author_Institution :
Dipt. di Bioingegneria, Politecnico di Milano, Italy
fYear :
1998
fDate :
13-16 Sep 1998
Firstpage :
545
Lastpage :
548
Abstract :
The paper presents the analysis of the Heart Rate Variability (HRV) signal in 19 subjects who recently had a Myocardial Infarction episode (MI). The study follows a nonlinear approach based on the multiparametric analysis of some invariant properties of the dynamical system generating the time series. First the authors reconstruct the system embedding space from the HRV time series. The False Nearest Neighbors (FNN) criterion provides the real embedding dimension value. Results show that through the FNN method it is possible to identify the correct number of LE in the system. Parameter values significantly separate subjects who after MI keep a good performance of the cardiac pump (normal ventricular ejection function, NEF) vs. the group which after MI shows a reduced ventricular ejection fraction (REF)
Keywords :
diseases; electrocardiography; medical signal processing; muscle; time series; ECG analysis; cardiac pump; electrodiagnostics; false nearest neighbors criterion; heart rate variability signal; high risk myocardial infarction subjects classification; myocardial infarction episode; nonlinearity parameters; normal ventricular ejection function; real embedding dimension value; reduced ventricular ejection fraction; system embedding space; Cardiology; Chaos; Control systems; Fuzzy control; Heart rate variability; Myocardium; Nearest neighbor searches; Nonlinear dynamical systems; Signal analysis; Time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computers in Cardiology 1998
Conference_Location :
Cleveland, OH
ISSN :
0276-6547
Print_ISBN :
0-7803-5200-9
Type :
conf
DOI :
10.1109/CIC.1998.731923
Filename :
731923
Link To Document :
بازگشت