DocumentCode :
2373326
Title :
Statistically linearized recursive least squares
Author :
Geist, Matthieu ; Pietquin, Olivier
Author_Institution :
IMS Res. Group, Supelec, Metz, France
fYear :
2010
fDate :
Aug. 29 2010-Sept. 1 2010
Firstpage :
272
Lastpage :
276
Abstract :
This article proposes a new interpretation of the sigma-point kalman filter (SPKF) for parameter estimation as being a statistically linearized recursive least-squares algorithm. This gives new insight on the SPKF for parameter estimation and particularly this provides an alternative proof for a result of Van der Merwe. On the other hand, it legitimates the use of statistical linearization and suggests many ways to use it for parameter estimation, not necessarily in a least-squares sens.
Keywords :
Kalman filters; least squares approximations; recursive estimation; Van der Merwe; parameter estimation; sigma-point Kalman filter; statistically linearized recursive least squares; Kalman filters; Least squares approximation; Machine learning; Noise; Parameter estimation; Transforms; Recursive least-squares; parameter estimation; statistical linearization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on
Conference_Location :
Kittila
ISSN :
1551-2541
Print_ISBN :
978-1-4244-7875-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2010.5589236
Filename :
5589236
Link To Document :
بازگشت