• DocumentCode
    2373380
  • Title

    A fixed point update for kernel width adaptation in information theoretic criteria

  • Author

    Paiva, António R C ; Príncipe, José C.

  • Author_Institution
    Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
  • fYear
    2010
  • fDate
    Aug. 29 2010-Sept. 1 2010
  • Firstpage
    262
  • Lastpage
    265
  • Abstract
    This paper presents a fixed point update for adaptation of the kernel width parameter in information theoretic criteria. These criteria are typically non-parametric and require a kernel width parameter to be appropriately set. The kernel width sets the smoothing bandwidth for estimation of the probability distribution of the error and, consequently, affects the performance surface. Hence, adaptation of the kernel width allows for the criterion, and its performance surface, to be adjusted to changes in the signal distribution. It is shown that the proposed fixed point update converges faster and is more stable when compared to a gradient update, and has no parameters. Moreover, it can be simplified to achieve the same computational complexity as the stochastic gradient update.
  • Keywords
    adaptive systems; information theory; learning (artificial intelligence); probability; computational complexity; fixed point update; information theoretic criteria; kernel width parameter; probability distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on
  • Conference_Location
    Kittila
  • ISSN
    1551-2541
  • Print_ISBN
    978-1-4244-7875-0
  • Electronic_ISBN
    1551-2541
  • Type

    conf

  • DOI
    10.1109/MLSP.2010.5589239
  • Filename
    5589239