DocumentCode :
2373380
Title :
A fixed point update for kernel width adaptation in information theoretic criteria
Author :
Paiva, António R C ; Príncipe, José C.
Author_Institution :
Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
fYear :
2010
fDate :
Aug. 29 2010-Sept. 1 2010
Firstpage :
262
Lastpage :
265
Abstract :
This paper presents a fixed point update for adaptation of the kernel width parameter in information theoretic criteria. These criteria are typically non-parametric and require a kernel width parameter to be appropriately set. The kernel width sets the smoothing bandwidth for estimation of the probability distribution of the error and, consequently, affects the performance surface. Hence, adaptation of the kernel width allows for the criterion, and its performance surface, to be adjusted to changes in the signal distribution. It is shown that the proposed fixed point update converges faster and is more stable when compared to a gradient update, and has no parameters. Moreover, it can be simplified to achieve the same computational complexity as the stochastic gradient update.
Keywords :
adaptive systems; information theory; learning (artificial intelligence); probability; computational complexity; fixed point update; information theoretic criteria; kernel width parameter; probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on
Conference_Location :
Kittila
ISSN :
1551-2541
Print_ISBN :
978-1-4244-7875-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2010.5589239
Filename :
5589239
Link To Document :
بازگشت