DocumentCode :
23744
Title :
On Real-Time Performance Evaluation of Volcano-Monitoring Systems With Wireless Sensor Networks
Author :
Lara, Roman ; Benitez, Diego ; Caamano, Antonio ; Zennaro, Marco ; Rojo-Alvarez, Jose Luis
Author_Institution :
Dept. de Electr. y Electron., Univ. de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
Volume :
15
Issue :
6
fYear :
2015
fDate :
Jun-15
Firstpage :
3514
Lastpage :
3523
Abstract :
A volcanic eruption early warning has to be launched with effectiveness and within the shortest time possible, which imposes the requirement of using real-time (RT) systems. In this setting, volcano-monitoring systems using wireless sensor networks (WSNs) may play a key role. Previous work did not report detailed-enough performance evaluation, in order to identify their main constraints as RT systems, either in simulation tools or in testbed scenarios. The aim of this paper was to identify the optimum number of sensors to be deployed a posteriori, based on simulation results considering throughput, packet loss, and end-to-end delay, as metrics to satisfy the RT requirements. We corroborated the simulation results obtained by a testbed deployment within a controlled environment. We determined that optimal scenario for volcano monitoring is a random topology, and the results show that 12 nodes should be deployed as maximum to satisfy the RT constraints. To test the system in a real scenario, 10 sensors were deployed in a strategic area at Cotopaxi Volcano, and information was collected during three days of continuous monitoring. This information was sent to a remote surveillance laboratory located 45 km away from the station placed at the volcano using WiFi-based long-distance technology. Our study shows that the coordinator node is the main bottleneck in the real application scenario, given that its processing rate provokes an excessive time delay near to 3 s, which has to be solved to satisfy the RT requirements. We conclude that a comprehensive study, including simulation, testbed, and in-situ deployment, provides valuable information for the specifications to be accounted in permanent WSN RT volcano monitoring.
Keywords :
computerised monitoring; geophysical techniques; geophysics computing; volcanology; wireless LAN; wireless sensor networks; Cotopaxi Volcano; Wi-Fi-based long-distance technology; end-to-end delay; packet loss; random topology; real-time performance evaluation; volcanic eruption early warning; volcano-monitoring system; wireless sensor networks; Measurement; Monitoring; Quality of service; Sensors; Volcanoes; Wireless communication; Wireless sensor networks; 802.15.4; WSN; delay; monitoring system; packet loss; throughput; volcano;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2015.2393713
Filename :
7012036
Link To Document :
بازگشت