DocumentCode :
2376348
Title :
Improved Direct Product Theorems for Randomized Query Complexity
Author :
Drucker, Andrew
Author_Institution :
Comput. Sci. & Artificial Intell. Lab., Massachusetts Intitute of Technol., Cambridge, MA, USA
fYear :
2011
fDate :
8-11 June 2011
Firstpage :
1
Lastpage :
11
Abstract :
The "direct product problem" is a fundamental question in complexity theory which seeks to understand how the difficulty of computing a function on each of k independent inputs scales with k. We prove the following direct product theorem (DPT) for query complexity: if every T-query algorithm has success probability at most 1 - ε in computing the Boolean function f on input distribution μ, then for α ≤ 1, every αεTk-query algorithm has success probability at most (2αε(1 - ε))k in computing the fc-fold direct product f⊗k correctly on k independent inputs from μ. In light of examples due to Shaltiel, this statement gives an essentially optimal tradeoff between the query bound and the error probability. Using this DPT, we show that for an absolute constant α >; 0, the worst-case success probability of any αR2(f)k-query randomized algorithm for f⊗k falls exponentially with k. The best previous statement of this type, due to Klauck, Spalek, and de Wolf, required a query bound of O(bs(f)k). Our proof technique involves defining and analyzing a collec tion of martingales associated with an algorithm attempting to solve f⊗k. Our method is quite general and yields a new XOR lemma and threshold DPT for the query model, as well as DPTs for the query complexity of learning tasks, search problems, and tasks involving interaction with dynamic entities. We also give a version of our DPT in which decision tree size is the resource of interest.
Keywords :
Boolean functions; computational complexity; decision trees; probability; randomised algorithms; Boolean function; T-query algorithm; XOR lemma; decision tree; error probability; improved direct product theorems; randomized algorithm; randomized query complexity; Boolean functions; Complexity theory; Computational modeling; Decision trees; Integrated circuit modeling; Random variables; average-case complexity; decision trees; direct product theorems; hardness amplification; query complexity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity (CCC), 2011 IEEE 26th Annual Conference on
Conference_Location :
San Jose, CA
ISSN :
1093-0159
Print_ISBN :
978-1-4577-0179-5
Electronic_ISBN :
1093-0159
Type :
conf
DOI :
10.1109/CCC.2011.29
Filename :
5959816
Link To Document :
بازگشت