DocumentCode :
2379085
Title :
PSO-based Evolutionary Optimization for Parameter Identification of an Induction Motor
Author :
Karimi, Ali ; Choudhry, Muhammad A. ; Feliachi, Ali
Author_Institution :
West Virginia Univ., Morgantown
fYear :
2007
fDate :
Sept. 30 2007-Oct. 2 2007
Firstpage :
659
Lastpage :
664
Abstract :
In this paper a particle swarm optimization (PSO) algorithm with a constriction factor is applied to identify the parameters of an induction motor. The variables used to estimate electrical and mechanical parameters are the measured stator currents and voltages. Performance of the identification scheme is demonstrated through simulation and compared with parameters obtained with a nonlinear least square technique. The estimated parameters compare well with the actual parameters.
Keywords :
induction motors; least squares approximations; parameter estimation; particle swarm optimisation; evolutionary optimization; induction motor; nonlinear least square technique; parameter identification; particle swarm optimization algorithm; Evolutionary computation; Genetic algorithms; Induction motors; Least squares methods; Motor drives; Parameter estimation; Particle swarm optimization; Stators; Testing; Voltage; Constriction Factor; Induction Motor; Nonlinear Least Squares; Parameter Identification; Particle Swarm Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Symposium, 2007. NAPS '07. 39th North American
Conference_Location :
Las Cruces, NM
Print_ISBN :
978-1-4244-1726-1
Electronic_ISBN :
978-1-4244-1726-1
Type :
conf
DOI :
10.1109/NAPS.2007.4402380
Filename :
4402380
Link To Document :
بازگشت