Title :
Person identification from human walking sequences using affine moment invariants
Author :
Iwashita, Yumi ; Kurazume, Ryo
Author_Institution :
Grad. Fac. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan
Abstract :
This paper proposes a new person identification method using physiological and behavioral biometrics. Various person recognition systems have been proposed so far, and one of the recently introduced human characteristics for the person identification is gait. Although the shape of one´s body has not been considered much as a characteristic, it is closely related to gait and it is difficult to disassociate them. So, the proposed technique introduces a new hybrid biometric, combining body shape (physiological) and gait (behavioral). The new biometric is the full spatio-temporal volume carved by a person who walks. In addition to this biometric, we extract unique biometrics in individuals by the following way: creating the average image from the spatio-temporal volume and forming the new spatio-temporal volume from differential images which are created by subtracting an average image from original images. Affine moment invariants are derived from these biometrics, and classified by a support vector machine. We used the leave-one-out cross validation technique to estimate the correct classification rate of 94 %.
Keywords :
affine transforms; biometrics (access control); feature extraction; gait analysis; image classification; image sequences; support vector machines; affine moment invariant; behavioral biometrics; feature extraction; human walking sequence; image classification; person gait identification; person recognition system; physiological biometrics; spatio-temporal volume; support vector machine; Biometrics; Character recognition; Humans; Joints; Legged locomotion; Robotics and automation; Shape; Spatiotemporal phenomena; Support vector machines; Thigh;
Conference_Titel :
Robotics and Automation, 2009. ICRA '09. IEEE International Conference on
Conference_Location :
Kobe
Print_ISBN :
978-1-4244-2788-8
Electronic_ISBN :
1050-4729
DOI :
10.1109/ROBOT.2009.5152485