DocumentCode :
238552
Title :
Leveraging Data-Parallelism in ILUPACK using Graphics Processors
Author :
Aliaga, J.I. ; Bollhofer, M. ; Dufrechou, Ernesto ; Ezzatti, Pablo ; Quintana-Orti, Enrique S.
Author_Institution :
Dept. de Ing. y Cienc. de los Comput., Univ. Jaime I, Castello de la Plana, Spain
fYear :
2014
fDate :
24-27 June 2014
Firstpage :
119
Lastpage :
126
Abstract :
In this paper, we address the exploitation of data parallelism for the solution of sparse symmetric positive definite linear systems via iterative methods on Graphics Processing Units (GPUs). In particular, we accelerate the preconditioned CG-based iterative solver underlying the incomplete LU decomposition package (ILUPACK) by off-loading the most expensive computations i.e., The solution of sparse triangular systems and sparse matrix-vector products-to the hardware accelerator. The results collected using GPUs from the two most recent generations from NVIDIA ("Fermi" and "Kepler") and a benchmark test bed of sparse linear systems show that the GPU-enabled implementations deliver a notable reduction of the execution time, while maintaining the convergence rate and numerical properties of the original ILUPACK solver.
Keywords :
convergence; coprocessors; iterative methods; mathematics computing; parallel processing; sparse matrices; vectors; Fermi; GPUs; ILUPACK; Kepler; NVIDIA; convergence rate; data parallelism; data-parallelism; execution time; graphics processing units; graphics processors; hardware accelerator; incomplete LU decomposition package; numerical properties; preconditioned CG-based iterative solver; sparse linear systems; sparse matrix-vector products; sparse symmetric positive definite linear systems; sparse triangular systems; Acceleration; Graphics processing units; Iterative methods; Kernel; Linear systems; Sparse matrices; Vectors; GPU; Sparse linear systems; conjugate gradient (CG) method; incomplete LU factorization; iterative solvers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Computing (ISPDC), 2014 IEEE 13th International Symposium on
Conference_Location :
Marseilles
Print_ISBN :
978-1-4799-5918-1
Type :
conf
DOI :
10.1109/ISPDC.2014.19
Filename :
6900209
Link To Document :
بازگشت