DocumentCode :
238742
Title :
PSO-based update memory for Improved Harmony Search algorithm to the evolution of FBBFNT´ parameters
Author :
Bouaziz, Souhir ; Alimi, Adel M. ; Abraham, Ajith
Author_Institution :
Res. Groups in Intell. Machines (REGIM), Univ. of Sfax, Sfax, Tunisia
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
1951
Lastpage :
1958
Abstract :
In this paper, a PSO-based update memory for Improved Harmony Search (PSOUM-IHS) algorithm is proposed to learn the parameters of Flexible Beta Basis Function Neural Tree (FBBFNT) model. These parameters are the Beta parameters of each flexible node and the connected weights of the network. Furthermore, the FBBFNT´s structure is generated and optimized by the Extended Genetic Programming (EGP) algorithm. The combination of the PSOUM-IHS and EGP in the same algorithm is so used to evolve the FBBFNT model. The performance of the proposed evolving neural network is evaluated for nonlinear systems of prediction and identification and then compared with those of related models.
Keywords :
genetic algorithms; neural nets; nonlinear systems; search problems; EGP algorithm; FBBFNT model; FBBFNT parameter evolution; PSO-based update memory for improved harmony search algorithm; PSOUM-IHS; evolving neural network; extended genetic programming; flexible beta basis function neural tree; nonlinear systems; Artificial neural networks; Genetic programming; Optimization; Prediction algorithms; Sociology; Statistics; Vectors; Extended Genetic Programming; Flexible Beta Basis Function Neural Tree; PSO-based update memory for Improved Harmony Search algorithm; nonlinear identification systems; nonlinear prediction systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2014 IEEE Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6626-4
Type :
conf
DOI :
10.1109/CEC.2014.6900304
Filename :
6900304
Link To Document :
بازگشت