Author :
Böscke, T.S. ; Govindarajan, S. ; Fachmann, C. ; Heitmann, J. ; Avellán, A. ; Schröder, U. ; Kudelka, S. ; Kirsch, P.D. ; Krug, C. ; Hung, P.Y. ; Song, S.C. ; Ju, B.S. ; Price, J. ; Pant, G. ; Gnade, B.E ; Krautschneider, W. ; Lee, B.H. ; Jammy, R.
Abstract :
We show for the first time that control of the crystalline phases of HfO2 by tetravalent (Si) and trivalent (Y,Gd) dopants enables significant improvements in the capacitance equivalent thickness (CET) and leakage current in capacitors targeting deep trench (DT) DRAM applications. By applying these findings, we present a MIM capacitor meeting the requirements of the 40 nm node. A CET < 1.3 nm was achieved at the deep trench DRAM thermal budget of 1000 degC
Keywords :
DRAM chips; MIS capacitors; crystallisation; dielectric materials; doping profiles; gadolinium; hafnium compounds; leakage currents; nanoelectronics; silicon; yttrium; 1000 C; 40 nm; 50 nm; HfO2; MIM capacitor; MIS capacitors; capacitance equivalent thickness; crystalline phases; deep trench DRAM; leakage current; tetragonal phase stabilization; tetravalent dopants; trivalent dopants; Capacitance; Crystallization; Dielectric constant; Doping; Grain boundaries; Hafnium oxide; Leakage current; MIM capacitors; Random access memory; Temperature;