DocumentCode :
2392232
Title :
Neuro-Fuzzy Based Modeling for Photovoltaic Power Supply System
Author :
Mellit, A. ; Kalogirou, S.A.
Author_Institution :
Dept. of Electron., Univ. Center of Medea
fYear :
2006
fDate :
28-29 Nov. 2006
Firstpage :
88
Lastpage :
93
Abstract :
Due to the increasing need for intelligent systems, the adaptive neuro-fuzzy inference system (ANFIS) has recently attracted the attention of researchers in various scientific and engineering areas. The purpose of this work is to present the modeling of a photovoltaic power supply (PVPS) system using an ANFIS. For the modeling of the PVPS system, it is required to find suitable models for its different components (ANFIS PV-generator, ANFIS battery and ANFIS regulator) under variable climatic conditions. A database of measured weather data (global radiation, temperature and humidity) and electrical signals (photovoltaic, battery and regulator voltage and current) of a PVPS system installed in Tahifet (south of Algeria) has been recorded for the period from 1992 to 1997 using a data acquisition system. These data have been used for the modeling and simulation of the PVPS system. The ANFIS for the PV-generator, battery and regulator have been trained by using 10 signals recorded from the different components of the PVPS system. Each signal is represented by 365*5 values (complete 5-years). A set of data for 4-years have been used for the training of the ANFIS and data for 1-year has been used for the testing of the ANFIS. In this way, the ANFIS was trained to accept and handle a number of unusual cases. The comparison between actual and estimated values obtained from the ANFIS gave satisfactory results. The correlation coefficient between measured values and those estimated by the ANFIS gave good prediction accuracy of 98%. In addition, test results show that the ANFIS performed better than the artificial neural networks (ANN). Predicted electrical signals by the ANFIS can be used for several applications in PV systems.
Keywords :
correlation methods; fuzzy neural nets; inference mechanisms; photovoltaic power systems; power engineering computing; power supplies to apparatus; ANFIS-battery model; PV-generator; PVPS; adaptive neuro-fuzzy inference system; correlation coefficient; data acquisition system; electrical signal; photovoltaic power supply system; regulator; Adaptive systems; Artificial neural networks; Batteries; Intelligent systems; Photovoltaic systems; Power supplies; Power system modeling; Regulators; Solar power generation; Testing; ANFIS; Artificial Intelligence; Modeling; Photovoltaic power supply system; Prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power and Energy Conference, 2006. PECon '06. IEEE International
Conference_Location :
Putra Jaya
Print_ISBN :
1-4244-0273-5
Electronic_ISBN :
1-4244-0274-3
Type :
conf
DOI :
10.1109/PECON.2006.346625
Filename :
4154469
Link To Document :
بازگشت