DocumentCode :
239256
Title :
Family bootstrapping: A genetic transfer learning approach for onsetting the evolution for a set of related robotic tasks
Author :
Moshaiov, Amiram ; Tal, Avishay
Author_Institution :
Iby & Aladar Fac. of Eng, Tel Aviv Univ., Tel Aviv, Israel
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
2801
Lastpage :
2808
Abstract :
Studies on the bootstrap problem in evolutionary robotics help lifting the barrier from the way to evolve robots for complex tasks. It remains an open question, though, how to reduce the need for designer knowledge when devising a bootstrapping approach for any particular complex task. Transfer learning may help reducing this need and support the evolution of solutions to complex tasks, through task relatedness. Relying on the commonalities of similar tasks, we introduce a new concept of Family Bootstrapping (FB). FB refers to the creation of biased ancestors that are expected to onset the evolution of "a family" of solutions not just for one task, but for a set of related robot tasks. A general FB paradigm is outlined and the unique potential of the proposed concept is discussed. To highlight the validity of the FB concept, a simple demonstration case, concerning the evolution of neuro-controllers for a set of robot navigation tasks, is provided. The paper is concluded with some suggestions for future research.
Keywords :
genetic algorithms; neurocontrollers; path planning; robots; statistical analysis; evolutionary robotics; family bootstrapping; general FB paradigm; genetic transfer learning approach; neurocontrollers; robot navigation task; robotic tasks; Erbium; Evolutionary computation; Optimization; Robot sensing systems; Sociology; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2014 IEEE Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6626-4
Type :
conf
DOI :
10.1109/CEC.2014.6900571
Filename :
6900571
Link To Document :
بازگشت