DocumentCode :
2394211
Title :
Recursive computation of stochastic Nash games with state-dependent noise for weakly-coupled large-scale systems
Author :
Mukaidani, Hiroaki
Author_Institution :
Grad. Sch. of Educ., Hiroshima Univ., Higashi-Hiroshima
fYear :
2008
fDate :
11-13 June 2008
Firstpage :
5016
Lastpage :
5022
Abstract :
This paper discusses the infinite horizon stochastic Nash games with state-dependent noise. After establishing the asymptotic structure along with the positive semidefiniteness for the solutions of the cross-coupled stochastic algebraic Riccati equation (CSARE), recursive algorithm for solving the CSARE is derived. As a result, it is shown that the proposed algorithm attains linear convergence and the reduced-order computations for sufficiently small parameter epsiv. As another important feature, the high-order approximate strategy that is based on the iterative solutions is proposed. Using such strategy, the degradation of the cost functional is established. Moreover, it is shown that the exponentially mean-square stable is guaranteed. Finally, in order to demonstrate the efficiency of the proposed algorithm, numerical example is given.
Keywords :
Riccati equations; asymptotic stability; large-scale systems; recursive functions; reduced order systems; stochastic games; cross-coupled stochastic algebraic Riccati equation; infinite horizon stochastic Nash games; recursive algorithm; state-dependent noise; weakly-coupled large-scale systems; Control systems; Convergence of numerical methods; Cost function; Degradation; Iterative algorithms; Large-scale systems; Riccati equations; Stochastic processes; Stochastic resonance; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2008
Conference_Location :
Seattle, WA
ISSN :
0743-1619
Print_ISBN :
978-1-4244-2078-0
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2008.4587289
Filename :
4587289
Link To Document :
بازگشت