DocumentCode :
2394234
Title :
Evaluation of biaxial mechanical properties of soft tubes and arteries using sonometry
Author :
Bernal, Miguel ; Urban, Matthew ; Rosario, Daniel ; Aquino, Wilkins ; Greenleaf, James F.
Author_Institution :
Coll. of Med., Mayo Clinic, Rochester, MN, USA
fYear :
2009
fDate :
3-6 Sept. 2009
Firstpage :
2835
Lastpage :
2838
Abstract :
Arterial elasticity has become a topic of importance in the past decades, as it has shown that it can be used to predict cardiovascular diseases and mortality. Several in vivo and ex vivo techniques have been developed to characterize the mechanical properties of vessels. In vivo techniques tend to ignore the anisotropicity of the vessel wall components. While ex vivo techniques tend to be destructive and do not to account for the geometry of the arteries. In this paper we present a technique using sonometry to study the elasticity of soft tubes and excised pig carotids in different directions. The method uses piezoelectric crystals to track the strain in the circumferential and longitudinal directions while the tubes or vessels are being pressurized. We compare the Young´s moduli obtained from sonometry experiments performed in two different types of tubes with the mechanical testing done in the material used to make these tubes. We also present data obtained in the excised pig carotids and show the differences in the longitudinal versus the circumferential directions. The technique we propose has a potential for the non destructive study of soft material cylindrical shapes and can be use to study the mechanical properties of vessels.
Keywords :
Young´s modulus; bioacoustics; biomechanics; biomedical measurement; blood vessels; cardiovascular system; diseases; elasticity; mechanical testing; piezoelectric materials; Young´s moduli; arterial elasticity; biaxial mechanical properties; cardiovascular diseases; circumferential direction; elasticity soft tubes; ex vivo techniques; excised pig carotids; in vivo techniques; longitudinal direction; mechanical testing; mortality; piezoelectric crystals; soft arteries; soft material cylindrical shapes; sonometry; vessel wall anisotropicity; Algorithms; Animals; Anisotropy; Arteries; Biomechanics; Biomedical Engineering; Carotid Arteries; Crystallization; Elastic Modulus; Elasticity; Equipment Design; Materials Testing; Pressure; Stress, Mechanical; Swine; Urethane;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Conference_Location :
Minneapolis, MN
ISSN :
1557-170X
Print_ISBN :
978-1-4244-3296-7
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2009.5333579
Filename :
5333579
Link To Document :
بازگشت